p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24⋊4Q8, C25.42C22, C24.566C23, C23.337C24, C22.1462+ (1+4), C2.15(D42), C23⋊Q8⋊7C2, C23.61(C2×Q8), C24⋊3C4.7C2, C22⋊C4.125D4, C23.423(C2×D4), C22⋊1(C22⋊Q8), C2.32(D4⋊5D4), C23.4Q8⋊4C2, C23.Q8⋊8C2, (C22×Q8)⋊3C22, (C22×C4).58C23, C23.8Q8⋊37C2, C23.7Q8⋊44C2, C2.3(C23⋊2Q8), C23.303(C4○D4), C22.68(C22×Q8), (C23×C4).350C22, C22.217(C22×D4), C2.C42⋊23C22, C2.14(C22.45C24), (C2×C4⋊C4)⋊17C22, (C2×C4).321(C2×D4), (C2×C22⋊Q8)⋊10C2, C2.16(C2×C22⋊Q8), C22.214(C2×C4○D4), (C22×C22⋊C4).22C2, (C2×C22⋊C4).124C22, SmallGroup(128,1169)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 820 in 390 conjugacy classes, 124 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C2 [×10], C4 [×16], C22 [×3], C22 [×12], C22 [×50], C2×C4 [×8], C2×C4 [×48], Q8 [×4], C23, C23 [×14], C23 [×50], C22⋊C4 [×8], C22⋊C4 [×22], C4⋊C4 [×15], C22×C4 [×2], C22×C4 [×10], C22×C4 [×20], C2×Q8 [×5], C24, C24 [×6], C24 [×10], C2.C42 [×2], C2.C42 [×4], C2×C22⋊C4 [×2], C2×C22⋊C4 [×12], C2×C22⋊C4 [×8], C2×C4⋊C4, C2×C4⋊C4 [×8], C22⋊Q8 [×8], C23×C4 [×4], C22×Q8, C25, C24⋊3C4, C23.7Q8 [×2], C23.8Q8 [×4], C23⋊Q8, C23.Q8 [×2], C23.4Q8, C22×C22⋊C4 [×2], C2×C22⋊Q8 [×2], C24⋊4Q8
Quotients:
C1, C2 [×15], C22 [×35], D4 [×8], Q8 [×4], C23 [×15], C2×D4 [×12], C2×Q8 [×6], C4○D4 [×4], C24, C22⋊Q8 [×8], C22×D4 [×2], C22×Q8, C2×C4○D4 [×2], 2+ (1+4) [×2], C2×C22⋊Q8 [×2], C23⋊2Q8, D42, D4⋊5D4 [×2], C22.45C24, C24⋊4Q8
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=e2, ab=ba, faf-1=ac=ca, eae-1=ad=da, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
(1 3)(2 14)(4 16)(5 7)(6 18)(8 20)(9 28)(10 29)(11 26)(12 31)(13 15)(17 19)(21 30)(22 27)(23 32)(24 25)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 28)(10 25)(11 26)(12 27)(21 30)(22 31)(23 32)(24 29)
(1 7)(2 8)(3 5)(4 6)(9 30)(10 31)(11 32)(12 29)(13 19)(14 20)(15 17)(16 18)(21 28)(22 25)(23 26)(24 27)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 23)(10 24)(11 21)(12 22)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 27 3 25)(2 26 4 28)(5 22 7 24)(6 21 8 23)(9 20 11 18)(10 19 12 17)(13 29 15 31)(14 32 16 30)
G:=sub<Sym(32)| (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,28)(10,29)(11,26)(12,31)(13,15)(17,19)(21,30)(22,27)(23,32)(24,25), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,28)(10,25)(11,26)(12,27)(21,30)(22,31)(23,32)(24,29), (1,7)(2,8)(3,5)(4,6)(9,30)(10,31)(11,32)(12,29)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,3,25)(2,26,4,28)(5,22,7,24)(6,21,8,23)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30)>;
G:=Group( (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,28)(10,29)(11,26)(12,31)(13,15)(17,19)(21,30)(22,27)(23,32)(24,25), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,28)(10,25)(11,26)(12,27)(21,30)(22,31)(23,32)(24,29), (1,7)(2,8)(3,5)(4,6)(9,30)(10,31)(11,32)(12,29)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,23)(10,24)(11,21)(12,22)(25,29)(26,30)(27,31)(28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,3,25)(2,26,4,28)(5,22,7,24)(6,21,8,23)(9,20,11,18)(10,19,12,17)(13,29,15,31)(14,32,16,30) );
G=PermutationGroup([(1,3),(2,14),(4,16),(5,7),(6,18),(8,20),(9,28),(10,29),(11,26),(12,31),(13,15),(17,19),(21,30),(22,27),(23,32),(24,25)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,28),(10,25),(11,26),(12,27),(21,30),(22,31),(23,32),(24,29)], [(1,7),(2,8),(3,5),(4,6),(9,30),(10,31),(11,32),(12,29),(13,19),(14,20),(15,17),(16,18),(21,28),(22,25),(23,26),(24,27)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,23),(10,24),(11,21),(12,22),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,27,3,25),(2,26,4,28),(5,22,7,24),(6,21,8,23),(9,20,11,18),(10,19,12,17),(13,29,15,31),(14,32,16,30)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 4A | ··· | 4P | 4Q | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | C4○D4 | 2+ (1+4) |
kernel | C24⋊4Q8 | C24⋊3C4 | C23.7Q8 | C23.8Q8 | C23⋊Q8 | C23.Q8 | C23.4Q8 | C22×C22⋊C4 | C2×C22⋊Q8 | C22⋊C4 | C24 | C23 | C22 |
# reps | 1 | 1 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 8 | 4 | 8 | 2 |
In GAP, Magma, Sage, TeX
C_2^4\rtimes_4Q_8
% in TeX
G:=Group("C2^4:4Q8");
// GroupNames label
G:=SmallGroup(128,1169);
// by ID
G=gap.SmallGroup(128,1169);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,184,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations